ABOUT THE AUTHORS

Newbean Capital is a registered investment adviser that manages early stage venture capital mandates for institutional investors. Its founder – Nicola Kerslake – has a longstanding interest in agriculture investment, having previously covered agriculture stocks as an equity analyst and managed institutional investment portfolios that covered the sector. She founded the Indoor Ag-Con event three years’ ago to provide a meeting place for those who are as passionate as she is about the promise of the indoor agriculture industry.

✉️ hello@newbeancapital.com 🌐www.newbeancapital.com

SG Farming is an online lifestyle and tech journal about the agriculture scene in Singapore. We explore and track the latest developments, trends and challenges of the local food system. We aim to promote local food and food sustainability, as well as to educate people regarding the origins of food and the processes in which they are produced.

Special credit to our intern analyst, Song Shuang, for her research contributions to this white paper.

✉️ singaporefarming@gmail.com 🌐www.sgfarming.wordpress.com

ACKNOWLEDGEMENTS

The authors would like to thank the following for their input into this paper: Yurij Duda of Argus Controls, Dr. Kozai of Chiba University, Dr. Wei Fang of National Taiwan University, Bill Whittaker of Priva, JJ Price of Spread, Eri Hayashi.

DISCLAIMER

This publication has been produced by Newbean Capital, a registered investment adviser. Readership of this publication does not create an investment client, or other business or legal relationship. It provides information about the indoor agriculture market to help you to better understand this industry. This publication does not purport to provide investment advice, nor may it be relied upon as a substitute for, specific investment, legal or other professional advice.

Newbean Capital has acted in good faith to provide an accurate publication. However, Newbean Capital does not make any warranties or representations of any kind about the contents of this publication, the accuracy or timeliness of its contents, or the information or explanations given. Newbean Capital has no obligation to update this report or any information contained within it.

Newbean Capital does not have any duty to you, whether in contract, tort, under statute or otherwise with respect to or in connection with this publication or the information contained within it. To the fullest extent permitted by law, Newbean Capital disclaims any responsibility or liability for any loss or damage suffered or cost incurred by you or by any other person arising out of or in connection with you or any other person’s reliance on this publication or on the information contained within it and for any omissions or inaccuracies.
EXECUTIVE SUMMARY

Asia consumes 75% of all vegetables globally, and in extraordinary variety, from the Chinese cabbage and radish that form the basis of Korean staple kimchi to medicinal Japanese specialty leafy green ice plant. Its consumers are changing their food preferences and supply chains are adjusting to meet their needs. As a consequence, its agricultural landscape is shifting, enabling the rise of technology-based farming approaches, such as, indoor agriculture.

Indoor agriculture is growing vegetables in controlled environments, such as warehouses, containers and purpose-built growing chambers, using hydroponic systems. It is not a new practice, its roots go back to Roman times, but it has undergone a revival in the past five years as enabling technologies become more available, more sophisticated and cheaper.

Asia has longstanding greenhouse and field agriculture industries, so it is perhaps unsurprising that it also has the most developed indoor agriculture industry of any globally. Japan alone had more plant factories by 2010 than the United States has today. The world’s first plant factory was established in Japan in 1983, and there are now approximately 450 across the region.

The majority – just over 40% - of Asia’s plant factories are in Japan; China, South Korea and Taiwan also have substantial plant factory industries. Despite 70%+ pa growth in the number of Taiwanese and Japanese plant factories since 2009, there is still plenty of scope for industry development as it is small in comparison to the overall vegetable market. Even in Japan, the industry provides less than 0.6% of total vegetable production, and only 18% of consumers are aware of plant factories and have purchased vegetables from them.

The changing expectations of Asia’s consumers are the primary driver of Asia’s indoor agriculture industry. Rising pollution, media coverage of food scandals and an increasing distaste for excessive pesticide use have led Asia’s consumers to demand “clean food”, typically defined as being pesticide free and from reputable sources. These trends favour indoor growers whose vegetables are typically grown without pesticides and in semi-clean room conditions.

In some countries, the industry has also benefited from supportive government policies and subsidies. In Japan, more than half of plant factories received either a loan (20%) or a subsidy and a loan (35%) to establish operations. Supporting indoor agriculture is a way of incorporating low-environmental impact farming into Asia’s rapidly expanding cities.

We anticipate that we will see better economics and more international expansion from Asia’s plant factories over the next few years, driven by rapid technology development especially in lighting and data usage. Indoor agriculture is at an exciting point in its development, with technology advances changing the economics of the industry, and enabling new business models, at a rapid clip.

1 Euromonitor figure, based on volume for 2014
2 “Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production”, Kozai, Niu & Takagaki, October 2015
3 Calculated based on ¥13bn in plant factory revenue for 2015 per Yano Research Institute Ltd, and total vegetable market size of ¥2tn for 2011 per Ministry of Agriculture, Forestry and Fisheries
4 Mitsubishi UFJ Research & Consulting 2013 Consumer Survey
5 Ministry of Agriculture, Forestry and Fisheries (MAFF) figures, March 2014
TABLE OF CONTENTS

Executive Summary | 2

A Introduction | 5

 Chart One: Asia's Indoor Agriculture Industry by Structure | 6

B State of the Industry | 7

 Chart Two: Geographic Spread of Asia's Plant Factories | 7

 Chart Three: Number of Japanese & Taiwanese Plant Factories | 7

 Chart Four: Japan's Plant Factories | 8

 Chart Five: China's Plant Factories | 8

 Chart Six: Taiwan's Plant Factories | 9

 Chart Seven: South Korea's Plant Factories | 9

 Chart Eight: Plant Factories in Other Parts of Asia | 10

C What's Driving Asia's Indoor Agriculture Growth | 12

 Chart Nine: Food, Beverages & Tobacco: Market Demand Growth (% Change pa) | 13

 Table Ten: Asian Government Support for the Indoor Agriculture Industry | 16

D Plant Factory Technologies | 17

 Chart Eleven: Plant Factory Components | 17

 1 Form Factors and Growing Systems | 17

 2 Environmental Control Unit | 18

 3 Nutrient Supply & Control | 18

 4 Air Conditioning | 18

 5 CO2 Supply Unit | 19

 6 Lighting | 19

 Chart Twelve: LED Lighting Price Falls | 20

E What Comes Next | 21

 Case Study: Exporting Plant Factory Technology | 22

F The Future of Asia's Indoor Agriculture Industry | 23

 Appendix: Japan's Artificial Light Plant Factories | 25
A INTRODUCTION

Asia consumes 75% of all vegetables globally\(^6\), and in extraordinary variety, from the Chinese cabbage and radish that form the basis of Korean staple kimchi to medicinal Japanese specialty leafy green ice plant. Its consumers are changing their food preferences and supply chains are adjusting to meet their needs. As a consequence, its agricultural landscape is shifting, enabling the rise of technology-based farming approaches, such as, indoor agriculture.

Indoor agriculture is not a new practice, its roots go back to Roman times, but it has undergone a revival in the past five years as enabling technologies become more available, more sophisticated and cheaper. We refer you to our earlier white paper – "Indoor Crop Production; Feeding the Future" of March 2015\(^7\) – for a brief history of the industry.

This paper is intended as an introduction to the indoor agriculture sector in Asia; it provides an overview of the current status, technologies and future prospects for indoor agriculture. Its authors are active in the industry, but do not consider themselves experts by any means. We are bound not by contractual arrangements, but by a mutual interest in seeing a thriving indoor agriculture industry as a component of a stronger, healthier global food supply chain. By the very nature of the exercise, our survey will omit many noteworthy projects and players.

For the purposes of this paper, we define indoor agriculture as growing vegetables in controlled environments, such as warehouses, containers and purpose-built growing chambers, using hydroponic systems. This definition covers a broad range of indoor farms, from basic table top systems in one’s apartment through large scale automated commercial operations, as is shown in table one over page.

Within Asia, the more sophisticated of these indoor farms use substantial robotics and automation to control operations, and are generally referred to as plant factories, but are sometimes called plant factories with artificial light (PFAL), vertical farms, and controlled environment agriculture (CEA). Our report focuses on commercial plant factories, whose major characteristics are:

- **Controlled Environment.** Grow rooms are typically controlled environments, such as a floor of an office block, with some being operated in semi or completely clean room conditions. This shields the plants from the outside world, so allowing better control over plant growth and excluding most pests.

- **Artificial Light.** Plant factories mostly rely on artificial light for plant growth, and this typically takes the form of either sodium or – increasingly – LED lights.

- **Resource Usage.** Plant factories use a fraction of the water required in the open field, in some cases as little as 1% of that used outdoors. Many eschew pesticides, and some are certified as organic.

- **Use of Automation & Robotics.** With sophisticated data and associated analytics becoming increasingly available, plant factories rely on an expanding range of technologies to minimize resource (energy, water) usage and optimize crop yields.

\(^6\) Eurofindex figure, based on volume for 2014

\(^7\) This paper can be downloaded at https://indoor.ag/whitepaper
CHART ONE: ASIA’S INDOOR AGRICULTURE INDUSTRY BY STRUCTURE

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>HYDROPONIC GREENHOUSES</th>
<th>PLANT Factories</th>
<th>CONTAINER FARMS</th>
<th>IN HOME SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Like soil-based greenhouses, these greenhouses grow crops in a single layer. Transparent roofs are employed to utilize natural sunlight, augmented with supplemental lighting during dark days and off-peak growing seasons.</td>
<td>Industrial, commercial or retail space is constructed or retrofitted with hydroponic, aquaponic or aeroponic equipment and crops are grown vertically to achieve economies of scale. Artificial lighting systems are used at all times.</td>
<td>Standardized, self-contained growing units that employ vertical farming and artificial lighting. In contrast to custom-designed warehouses, container farms strive for standardization.</td>
<td>Systems targeted at consumers for small scale in home growth, whether as fridges in kitchens or as standalone units elsewhere in the home.</td>
<td></td>
</tr>
<tr>
<td>ESTIMATED NO. OF COS IN ASIAN MARKET</td>
<td>Our estimate is at least 500, covering at least 54k ha / 134k acres based on Cuesta Roble Consulting data</td>
<td>450 plant factories, with an estimated 518 by the end of 2016</td>
<td>3 commercial, likely 4-5 others in process of commercializing</td>
<td>At least 7-8 offering some form of in-home solution</td>
</tr>
<tr>
<td>COMPANY EXAMPLES</td>
<td>Iwaki Onahama Veg. Farm, Kagome Co. Ltd, Le Gaga</td>
<td>Jingpeng Plant Factory, KiMiDoRi Corporation, Mirai, Refresh Hamyang, SCATIL, Spread, Vegetechs</td>
<td>Alesca Life Technologies, Daiwa’s agri-cube, FreightFarms</td>
<td>Hulying Ecological, iGrowths, Pacific Construction Co</td>
</tr>
</tbody>
</table>

Source: Miscellaneous public sources, greenhouse data from Cuesta Roble Consulting, Newbean Capital analysis

When we refer to Asia, we include the following countries: China, Hong Kong, Japan, Mongolia, Singapore, South Korea, Taiwan, Vietnam. We have selected these countries as they have commercial plant factories, and we discuss China, Japan and Taiwan most as they have the largest indoor agriculture industries.
B STATE OF THE INDUSTRY

Asia has longstanding and well established greenhouse and field agriculture industries, so it is perhaps unsurprising that it also has the most developed indoor agriculture industry of any globally. Japan alone had more plant factories by 2010 than the United States has today. The world’s first plant factory was established in Japan in 1983⁸, and there are now approximately 450 in operation across the region, as is shown in the maps over page. The industry’s major characteristics are:

Geographic Spread
The majority – just over 40% - of Asia’s plant factories are in Japan; we have included a list of the artificial light and combined artificial and sunlight plant factories in an appendix for reference. China and Taiwan also have substantial plant factory industries.

Industry Growth
Despite 70%+ pa growth in the number of Taiwanese and Japanese plant factories since 2009, there is still plenty of scope for industry development as the industry is small in comparison to the overall vegetable market. Even in Japan, the industry provides less than 0.6% of total vegetable production⁹, and only 18% of consumers are aware of plant factories and have purchased vegetables from them¹⁰.

Crop Diversity
As is the case for plant factories globally, lettuce is the largest crop representing just under half of the crops produced by number¹¹. Other leafy greens and herbs are also popular, at 14% and 17% of crops produced by number respectively¹¹. Otherwise, Asia has a greater range of crops than is seen elsewhere in the world, for example, it has commercial production of specialty crops such as berries.

⁸ "Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production", Koizai, Niu & Takagaki, October 2015
⁹ Calculated by taking crops produced by each of the plant factories with artificial light and plant factories with combined artificial light and sunlight in Japan, with data from Japan Greenhouse Horticulture Association
¹⁰ Mitsubishi UFJ Research & Consulting 2013 Consumer Survey
¹¹ Calculated based on ¥13bn in plant factory revenue for 2015 per Yano Research Institute Ltd, and total vegetable market size of ¥2tn for 2011 per Ministry of Agriculture, Forestry and Fisheries
CHART FOUR: JAPAN’S PLANT FACTORIES

1. Chubu 22% of plant factories in Japan
2. Kanto* 16% of plant factories in Japan

* Tokyo included

Source: Japan Greenhouse Horticulture Association, 2013

CHART FIVE: CHINA’S PLANT FACTORIES

1. Beijing 32% of plant factories in China
2. Hong Kong 26% of plant factories in China
3. Guangdong 21% of plant factories in China
4. Rest of China 21% of plant factories in China

Source: Prof. & Dr Qichang Yang, shows only plant factories with artificial light
CHART SIX: TAIWAN’S PLANT FACTORIES

1. Taipei & New Taipei - 38% of plant factories in Taiwan
2. Taichung, Changhua, Nantou & Yunlin - 18% of plant factories in Taiwan
3. Taoyuan - 15% of plant factories in Taiwan
4. Chiayi, Tainan, Kaohsiung & Pingtung - 15% of plant factories in Taiwan
5. Hsinchu - 9% of plant factories in Taiwan
6. Rest of Taiwan - 5% of plant factories in Taiwan

Source: PIDA, 2015

CHART SEVEN: SOUTH KOREA’S PLANT FACTORIES

1. Gyeonggi - 50% of plant factories in South Korea
2. Seoul - 15% of plant factories in South Korea
3. South Gyeongsang - 15% of plant factories in South Korea
4. North Gyeongsang - 10% of plant factories in South Korea
5. Gwangju - 5% of plant factories in South Korea
6. South Jeolla - 5% of plant factories in South Korea

Source: Dr. Changhoon Chun
CHART EIGHT: PLANT FACTORIES IN OTHER PARTS OF ASIA

- **Singapore**: 5 PFALs
- **Mongolia**: 2 PFALs
- **Vietnam**: 1 PFAL

Source: News Reports, Newbean Capital / Singapore Farming Analysis
THE RISE OF ASIA’S INDOOR AGRICULTURE INDUSTRY
C WHAT’S DRIVING ASIA’S INDOOR AGRICULTURE GROWTH

The changing expectations and behaviour patterns of Asia’s consumers with regard to food consumption are the primary driver of Asia’s indoor agriculture industry. In some countries, the industry has also benefited from supportive government policies and subsidies.

Changing Consumer Needs

Rising pollution, media coverage of food scandals and an increasing distaste for excessive pesticide use have led Asia’s consumers to demand “clean food”, typically defined as being pesticide free and from reputable sources. Recurrent food scandals – from melamine in baby food to tainted meat served at fast food restaurant KFC – have led Chinese consumers in particular to seek information on the source and safety of their food. For example, popular venture capital-backed food delivery app Ele.me removed 30% of restaurants from its app in Hangzhou alone following media coverage of poor hygiene standards in some kitchens.

Environmental factors also play a part, whether in the form of concerns over radiation exposure in Japan following the Tōhoku earthquake, tsunami and nuclear disaster or smog in China’s major urban centres, such as Beijing, where the air pollution index was 2013 times what the World Health Organization considers to be safe at the end of November 2015. Shigeharu Shimamura, the erstwhile CEO of one of Japan’s better known plant factory companies – Mirai – was inspired to start the firm by a wish to help the country recover from 2011’s natural disasters.

The same trend is driving renewed enthusiasm for hobby growing, whether in the form of small garden plots or the in-house hydroponic and aquaponics systems. Naturally, a particular concern is young infants’ diets, with one Chinese seed seller reporting that fully half of its customers are mothers growing vegetables for their young children14.

At the same time, Asia’s consumers are changing their diets, seeking more dairy, meat and processed foods, the latter often being vegetable-based. Indoor farms are playing a part in satisfying this demand, for example, one Taiwanese company has developed value added products, such as, egg rolls, bread and ice cream based on its plant factory.

Combined, these trends favour indoor growers whose vegetables are typically grown without pesticides and in at least semi-clean room conditions. Moreover, indoor growers are more easily able to identify the source of their vegetables, rather than there being from a variety of unnamed sources and a long supply chain, portions of which are unrefrigerated.

Supply Chain Restructuring

Based on data from the Economist Intelligence Unit, Asia is the fastest growing region for food & beverage products. Just as traditional wet markets ceded ground to supermarkets over the past few decades, now supermarkets are being challenged by online grocery and food delivery services. Market research firm Nielsen found that more than a third (37%) of Asia-Pacific respondents, and nearly half of Chinese respondents (46%), say they use an online grocery ordering and delivery service, well ahead of global averages15.
These changes benefit indoor agriculture, which is able to supplement traditional agriculture by offering a consistent year-round supply of fresh locally grown vegetables, a key factor for increasingly popular organic vegetables and in off seasons when vegetables are hard to source. For instance, Taiwan’s farmers grow around 130 types of vegetables, but the country still imports 70% of its organic food and beverages.

Supportive Government Policies

Arguably, Asia’s governments have been the most supportive of any globally towards the indoor agriculture industry. As is shown in table ten, this support ranges from subsidies to national policy initiatives. In Japan, more than half of plant factories received either a loan (20%) or a subsidy and a loan (35%) to establish operations.

Government support is supplemented by the formation of trade associations that combine the talents of private firms and academic institutions. One example is the Taiwan Plant Factory Industry Development Association, formed by twenty businesses and academic research institutions, including the Industrial Technical Research Institute, the nonprofit research institute that famously played a role in kickstarting Taiwan’s world-leading semiconductor industry. The region is also home to leading research universities in the space, such as Chiba University.

16 “Postharvest Losses of Fruit and Vegetables in Asia”, Food and Fertilizer Technology Centre for the Asian and Pacific Region
18 Ministry of Agriculture, Forestry and Fisheries (MAFF) figures, March 2014
In our view, the driving forces for this support are economic development and food security.

Food security is especially important in countries that are experiencing declining food self-sufficiency rates. Japan, for example, has seen its food self-sufficiency ratio – the proportion of consumption that is grown in the country – fall from around 80% in 1960 to around 40% today. The issue is becoming more pressing as the average age of farmers rises, farmland is abandoned whether owing to pollution, soil erosion or for conversion to other uses, and water becomes scarcer. Supporting indoor agriculture is a way of incorporating low-environmental impact farming into Asia’s rapidly expanding cities.

A secondary driver is economic development, especially where the redeployment of existing technologies into the indoor agriculture industry can lead to higher equipment and technology exports. For instance, Japanese major Fujitsu’s Aizuwakamatsu Akisai Plant Factory uses a repurposed semiconductor factory infrastructure combined with the company’s expertise in energy conservation, environmental technology and semiconductor manufacturing. Technology export has been the engine of several waves of economic growth in Asia, with earlier examples being petrochemicals and semiconductors, so it’s logical that technology-based agriculture should now be a focus.

19 “Food Self-Sufficiency and International Trade: A Rise Dichotomy?”, Food and Agriculture Organization of the United Nations, March 2015
20 “Introduction to Fujitsu’s Food and Agriculture Cloud Akisai”, Fujitsu Ltd, July 24, 2014
D PLANT FACTORY TECHNOLOGIES

The following is an overview of the components of plant factories, the basis of which is the classification delineated by leading plant factory researcher Dr. Toyoki Kozai. We look briefly at the purpose and status of each component, and at the opportunities for development in each.

CHART ELEVEN: PLANT FACTORY COMPONENTS

1. FORM FACTORS AND GROWING SYSTEMS

Plant factories are housed in controlled environments, and these are generally insulated and isolated from the outside world via air locks or by operating in entirely clean-room conditions. They are in a variety of settings, from purpose built warehouses to repurposed semiconductor factories. For instance, over 90% of Taiwan’s plant factories are housed in office buildings²¹.

²¹ Per Dr Wei Fang
Growing systems comprise a series of up to 20 vertical layers of grow racks with troughs that contain the nutrient-rich water in which plant roots grow, and each layer of which incorporates lighting. Historically, growers have mostly chosen to build their own growing systems – using everything from basic PVC pipes to professionally engineered racking systems – but a plethora of firms now offer turnkey solutions.

Opportunities: With numerous systems now commercialized – from players as varied as majors such as Panasonic and Fujitsu through to one-person startups – natural opportunities are in improving the efficiencies of the systems, or in creating add-on solutions and integrated products, such as white-labeled organic nutrient solutions. Adding automation and robotics to systems is also a promising research avenue, as this offers the potential to reduce the labour costs that generally make up around a quarter of plant factory operating costs.

2. ENVIRONMENTAL CONTROL UNIT

Environmental control units monitor, and sometimes adjust, a range of indoor farm factors, for instance, pH, nutrient and humidity levels. Companies such as Argus Controls, Autogrow and Priva offer plentiful products, from the simplest pH monitors to sophisticated systems that track worker productivity. Several have cloud based options that allow users to remotely access and control their farms. Thanks to the advent of big data – vast data sets that can be analyzed to identify patterns, trends, and associations – control systems are one of the most attractive areas of indoor farms for further development as market commentators anticipate better crop yields from the application of results from big data analytics.

Opportunities: The explosion of cheap sensors and analytic platforms over the past few years has opened the possibility of creating a better understanding of plant behavior, one which is likely to be captured by both existing players and startups alike. We discussed this opportunity in more detail in an earlier white paper; “Robotics and Automation in Indoor Agriculture” of October 2015⁷.

3. NUTRIENT SUPPLY & CONTROL

In hydroponic systems, plants’ nutrient needs are supplied through the solution in which roots rest, and differ according to plant type and life stage. Some growers use commercially available nutrient mixes, while others choose to create their own custom mixes, and view these as part of their unique approach to growing. Most also use dosing control systems that monitor and administer nutrients to the farm’s recirculating water system. Such systems are offered by a combination of longstanding greenhouse suppliers, such as Dosatron International, and newer market entrants.

Opportunities: Many growers would like to better verify the plant growth and flavour claims made by commercial nutrient suppliers, and to better understand the impact of microbiomes in soil. Naturally, smaller growers are always on the lookout for cheaper, simpler systems to use in their farms in addition.

4. AIR CONDITIONING

Creating optimal temperature and humidity conditions is vital to plant health, so growers devote a good deal of attention to selecting air conditioning equipment. A large range of options are commercially available, and the grower’s selection is generally determined by a combination of initial capital cost, unit capacity and operating costs, as air conditioning typically comprises 20-30% of electricity costs. There are substantial economies of scale in air conditioning, such that larger farms have lower capital and operating costs per square metre of planted space.
Opportunities: Growers consistently seek air conditioning systems that integrate well with farm control systems, and are cheaper and more efficient than those currently available. This is especially the case for smaller farms, which do not currently have access to larger, more efficient options.

5. CO2 SUPPLY UNIT

Carbon dioxide or CO2 supplies essential elements to plants. It’s common to enrich the CO2 available in plant factories above ambient levels as studies as far back as the mid-1980s have established a correlation with better yields - especially when used at certain plant life stages - and with more efficient plant water use. CO2 is generally piped directly into the facility to reach the required level, though ventilation systems and local regulations may preclude some farms reaching the level that’s theoretically optimal for the plants.

Opportunities: Though not the area of greatest promise among those listed here, cheaper methods of supplying and controlling carbon dioxide in plant factories are always welcome, as is better understanding of the interrelationship between crop yield and CO2 levels.

6. LIGHTING

Lighting design is a vital component for plant factories, as it provides the only source of illumination for plant growth in a closed system. It is also an important financial decision for the grower, typically comprising around half of the build cost of a farm when LEDs are used. Some growers run LEDs as much as 18 hours per day, representing a large portion of electricity spend, often in the region of 70-80%. Though sodium lighting has been a mainstay of the horticulture industry, it is rapidly ceding ground to LED lighting, which has the benefits of lower heat and better grower control over its behavior. Large falls in LED prices have been accompanied by efficiency improvements, and there are myriad options for growers, from turnkey solutions from leaders such as Heliospectra, Illumitex, Lumigrow and Philips Lighting, through to custom manufactured solutions from companies such as Hungry Planet Technologies of the US or Nuetech of Singapore. The sector has seen rapid innovation over the past decade, as both academic and commercial understanding of the way that plant biology and light interact become more sophisticated. For instance, one European company has developed ‘light recipes’ that are intended to deliver the optimal light spectrum required by a plant through its lifecycle without grower intervention or adjustment. The investment community has played a substantive role in spurring this innovation, plowing US$800mn of venture capital into the lighting sector between 2008 and 2010 alone²².

Opportunities: We are only at the beginning of our understanding of how light and plant biology interact, and consequently there are numerous opportunities for commercialization of new approaches and discoveries. For example, Dr. Toyoki Kozai has proposed research into the use of green LEDs and of upward lighting (as opposed to the intercrop lighting that’s common now) for densely spaced crops⁸.

⁸ Toyoki Kozai, personal communication, 2015
CHART TWELVE: LED LIGHTING PRICE FALLS

Source: LEDinside, for 40w Equivalent LED Street Price
WHAT COMES NEXT

We anticipate that we will see better economics and more international expansion from Asia’s plant factories over the next few years, driven by rapid technology development.

Technology Development

Indoor agriculture is at an exciting point in its development, with technology advances changing the economics of the industry, and enabling new business models, at a rapid clip. At present, developments in LED lighting and in ‘big data’ usage are being commercialized, bringing better yields and lower resource usage to plant factories. Examples include ‘light recipes’ and the exploration of adjusted light spectrum for LED lighting. Further out is an expansion of the crops that can be grown in indoor systems; research ranges from staple crops such as rice, to highly specialized medicinal crops. For example, a 2014 research study published by Dr. Toru Maruo et al concluded that rice could be grown in plant factories.

International Expansion

As is shown in the case study over page, Asia’s plant factory companies are leaders in exporting their technologies to establish new farms in other countries. This is hardly a surprise given that the export-led economic growth model – whereby companies focus on developing and exporting technologies – has been the dominant one in Asia since at least the 1960s when the ‘Four Tigers’ (Singapore, Hong Kong, Taiwan and South Korea) mimicked Japan’s earlier success in focusing on exports. To date, this expansion has been contained to a limited number of Asian markets, but we anticipate that these companies will eventually look to Europe, Africa and the United States as export destinations.

Better Economics

A sometimes reasonable criticism of the indoor agriculture industry is that it is unprofitable; sub-scale operations and a focus on commodity crops, such as head lettuce, being two culprits. Only a quarter of Japan’s plant factories are profitable, and half breakeven. Consequently, a major industry focus going forward is likely to be better profitability, the most obvious way of achieving this being by investing in newer technologies, and in expansion of existing operations. Lighting, automation and control systems are likely to be the largest areas of technical upgrades, as growers seek to contain the energy and labour costs that typically take up more than a quarter of operating costs each. Ironically, Asia’s “early adopter” status meant that its installed farm base is reliant on less efficient sodium lighting, rather than the LED lights around which increasingly sophisticated research and approaches are based.

Sadly, there are also likely to be a number of business closures as the industry matures. We note that a high level of business failures is a characteristic of a rapidly growing industry, and the same cycle has been seen in analogous industries such as solar; industry blog Greentech Media found that, of 200 solar companies backed by venture capitalists in 2008, nearly 30% had gone bankrupt or closed by April 2013.

24 Ministry of Agriculture, Forestry & Fishery of Japan’s survey of February 2014
CASE STUDY: EXPORTING PLANT FACTORY TECHNOLOGY

Sources: Dr. Changhee Chun, News Reports, Singapore Farming / Newbean Capital analysis

KOREA
Cos have installed farms in Japan, China, Mongolia and Qatar

JAPAN
Fujitsu, Mira & Panasonic have farms in Hong Kong, Mongolia, Singapore & Vietnam
THE FUTURE OF ASIA’S INDOOR AGRICULTURE INDUSTRY

As Asia’s governments grapple with the environmental and societal changes that the region’s fast-paced growth have brought over the past thirty years, indoor agriculture is a way of stretching scarce resources – water, land, farm labour – further and of ensuring food security.

For its major industrial conglomerates, it holds the prospect that export-led growth can continue and that agriculture can join the list of industries in which it dominates.

Most importantly, for Asia’s citizens, it offers the promise that – as we leave the family farms of our ancestors for the cubicle farms of the metropolis – a little of the countryside can join us in our everyday life in the city.
APPENDIX: JAPAN’S ARTIFICIAL LIGHT PLANT FACTORIES

<table>
<thead>
<tr>
<th>Brand/ Plant Name</th>
<th>Operating Body</th>
<th>Prefectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstration plant factory</td>
<td>The FIDEA Research Institute Corporation.</td>
<td>Akita</td>
</tr>
<tr>
<td>Hiranwiwa Factory</td>
<td>Yokote Precisions Industry Co., Ltd.</td>
<td>Akita</td>
</tr>
<tr>
<td>Sanmori Factory</td>
<td>Itagaki Kogyo Co., Ltd.</td>
<td>Akita</td>
</tr>
<tr>
<td>Chef-no-Saigen</td>
<td>Comfort Hotel Narita</td>
<td>Chiba</td>
</tr>
<tr>
<td>Green Flavor Goko</td>
<td>MIRAI Co., Ltd.</td>
<td>Chiba</td>
</tr>
<tr>
<td>Urban Farm Inc.</td>
<td>Urban Farm Inc.</td>
<td>Chiba</td>
</tr>
<tr>
<td>Demonstration plant factory</td>
<td>Plants Factory Inzai Co., Ltd.</td>
<td>Chiba</td>
</tr>
<tr>
<td>Sanmori Factory</td>
<td>Jardin Co., Ltd.</td>
<td>Chiba</td>
</tr>
<tr>
<td>Chef-no-Saigen</td>
<td>TDU Inzai Innovation Activation Center</td>
<td>Chiba</td>
</tr>
<tr>
<td>Yume Farm Yanadani</td>
<td>General Foundation Yanadani Sangyo Kaihatsu Kosha</td>
<td>Ehime</td>
</tr>
<tr>
<td>Berg Earth Co., Ltd.</td>
<td>Green Tac Farm Co., Ltd.</td>
<td>Ehime</td>
</tr>
<tr>
<td>Nippon System Group Co., Ltd.</td>
<td>Nippon System Group Co., Ltd.</td>
<td>Ehime</td>
</tr>
<tr>
<td>Aqua Farm</td>
<td>Aqua Farm Co., Ltd.</td>
<td>Fukui</td>
</tr>
<tr>
<td>Fukui Nanzen-mae Factory</td>
<td>Yasai Kobo Co., Ltd.</td>
<td>Fukui</td>
</tr>
<tr>
<td>High-tech Farm Takefu Factory</td>
<td>Agricultural Producers Cooperative Corporation High-tech Farm</td>
<td>Fukui</td>
</tr>
<tr>
<td>Plant Factory Green land</td>
<td>Kidaya shoten CO., Ltd.</td>
<td>Fukui</td>
</tr>
<tr>
<td>Sanbase Ono</td>
<td>Sanbase Ono Co., Ltd.</td>
<td>Fukui</td>
</tr>
<tr>
<td>Chaenoko</td>
<td>Chaenoko Corporation</td>
<td>Fukui</td>
</tr>
<tr>
<td>Restaurant</td>
<td>Furec Co., Ltd.</td>
<td>Fukuoka</td>
</tr>
<tr>
<td>Kawachi-Kogen agricultural products vegetable factory</td>
<td>KIMiDoRi Corporation</td>
<td>Fukuoka</td>
</tr>
<tr>
<td>TS Farm Shirakawa</td>
<td>Kewpie Corporation</td>
<td>Fukushima</td>
</tr>
<tr>
<td>Cosmo Farm Iwamizawa</td>
<td>Aizufujikako CO., LTD.</td>
<td>Fukushima</td>
</tr>
<tr>
<td>Fujita Engineering</td>
<td>JA Tohza-Shirakawa</td>
<td>Fukushima</td>
</tr>
<tr>
<td>Main Factory</td>
<td>Fujitsu Group Consortium</td>
<td>Fukushima</td>
</tr>
<tr>
<td>R.S Farm</td>
<td>Fujita Engineering Co., Ltd.</td>
<td>Gunma</td>
</tr>
<tr>
<td>Chudenko</td>
<td>SEIDEN KOGYO Co., Ltd.</td>
<td>Gunma</td>
</tr>
<tr>
<td>Restaurant</td>
<td>TAISEI Yasai Kobo Co., Ltd.</td>
<td>Gunma</td>
</tr>
<tr>
<td>Social Welfare Corporation HABATAKI</td>
<td>Chudenko Corporation</td>
<td>Hiroshima</td>
</tr>
<tr>
<td>Social Welfare Corporation Cupid-Fair</td>
<td>Furec Co., Ltd.</td>
<td>Hiroshima</td>
</tr>
<tr>
<td>Sun Farm Pasio</td>
<td>Chugoku Kogyo Co., Ltd.</td>
<td>Hiroshima</td>
</tr>
<tr>
<td>Cosmo Farm Pasio</td>
<td>Social Welfare Corporation Cupid-Fair</td>
<td>Hokkaido</td>
</tr>
<tr>
<td>Me-ru Ecobata</td>
<td>Social Welfare Corporation Cupid-Fair</td>
<td>Hokkaido</td>
</tr>
<tr>
<td>Old Minamidani Elementary School</td>
<td>KINJIRUSHI Co., Ltd.</td>
<td>Hokkaido</td>
</tr>
<tr>
<td>Plant Factory</td>
<td>Tsuchiya Dairy Equipment Mfg. Co.</td>
<td>Hokkaido</td>
</tr>
<tr>
<td>Social Welfare Corporation HABATAKI</td>
<td>Social Welfare Corporation HABATAKI</td>
<td>Hokkaido</td>
</tr>
<tr>
<td>Hanshin Yasai Plantation</td>
<td>Social Welfare Corporation SARARA SOBETSU</td>
<td>Hokkaido</td>
</tr>
<tr>
<td>Kobe Nunobiki Herb Gardens</td>
<td>Hanshin Electric Railway Co., Ltd.</td>
<td>Hyogo</td>
</tr>
<tr>
<td>Meguminosato</td>
<td>Kobe Resort Service Co., Ltd.</td>
<td>Hyogo</td>
</tr>
<tr>
<td>Mie-ru Ecobata</td>
<td>NTT West Japan Asset Planning Co., Ltd.</td>
<td>Hyogo</td>
</tr>
<tr>
<td>Old Minamidani Elementary School</td>
<td>Orix Real Estate Corporation</td>
<td>Hyogo</td>
</tr>
<tr>
<td>Shunsai Buffet Megumi</td>
<td>Seven Planning Co., Ltd.</td>
<td>Hyogo</td>
</tr>
<tr>
<td>VEGESTORY</td>
<td>KANSAI TEKKO Co., Ltd.</td>
<td>Hyogo</td>
</tr>
<tr>
<td>Bakery & Café Maple House</td>
<td>Maple House Co., Ltd.</td>
<td>Ishikawa</td>
</tr>
<tr>
<td>In Restaurant</td>
<td>Bistro Heureux</td>
<td>Ishikawa</td>
</tr>
<tr>
<td>Main Factory</td>
<td>Tsudagoma General Service Corporation</td>
<td>Ishikawa</td>
</tr>
</tbody>
</table>
Shiawase Shokusai Gottsune
Social Welfare Corporation Nanyoen
Ishikawa

Kanoya leaf kan
Kyokumakoto Kosan Co., Ltd.
Kagoshima

Bashamichi LED Saien
Keystone Technology Inc.
Kanagawa

Gakunan Kenko
Yokohama Construction Association
Kanagawa

Shin-Yokohama LED Saien
Keystone Technology Inc.
Kanagawa

Torihama Green Farm
T&N Agri Co., Ltd.
Kanagawa

MARUAKI FOODS Co., Ltd.
Kanagawa

Colowide MD Co., Ltd.
Kanagawa

Toho Rentail Co., Ltd.
Kanagawa

Aso Kenko Noen House
Agricultural Producers Cooperative Corporation
Kumamoto

Hikarikko Kobo
Create Hikari Inc.
Kumamoto

Nishigoshi Factory
Nakagawa Sangyo Co., Ltd.
Kumamoto

Kameoka plant
Spread Co., Ltd.
Kyoto

Shinsei Industry
Shinsei Industry Co., Ltd.
Kyoto

General Production Co., Ltd.
Kyoto

Plant factory
Kobashidenki Co., Ltd.
Mie

Onagawa Factory
Sato Kogyo Co., Ltd.
Miyagi

Rokuchome-Nouen
Apple Farm Co., Ltd.
Miyagi

Secom High Plant
Secom Industries Co., Ltd.
Miyagi

Tagajo Factory
Mirai Co., Ltd.
Miyagi

Bellivia] in front of JR Chino Station
Suwasai Co., Ltd.
Nagano

[Hinatabokko] Ajisai-Kosha
Showa Co., Ltd.
Oita

Kyozan Solar Green Park
Ryobi Holdings
Okazama

Vege factory
Tusnetsugu Kogyo Co., Ltd.
Okazama

Yasai-Kura
Y&S Distributor Co., Ltd.
Okazama

Yume Farm Ukan Co., Ltd.
Yume Farm Ukan Co., Ltd.
Okinawa

Aguri Industry
Okinawa-keisoku Co., Ltd.
Okinawa

Gushiken vegetable factory
Gushiken Co., Ltd.
Okinawa

Itoman plant factory
Internationally Local & Company
Okinawa

Kitanakagusu Degi Farm
NPO Subtropical Biomass Research Center
Okinawa

Nakagusu Degi Farm
NPO Subtropical Biomass Research Center
Okinawa

Okinawa Murakami Nouen
Okinawa Murakami Nouen Co., Ltd.
Okinawa

Okinawa type vegetable factory
Kamiya Sangyo Co., Ltd.
Okinawa

Plant factory Project
Okinawa Cellular Telephone Company
Okinawa

Ryuseki Kensetsu Plant factory
Ryuseki Kensetsu Co., Ltd.
Okinawa

Social Support Esperer
ESPERER, Inc.
Okinawa
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yasai kobo</td>
<td>Okinawa</td>
</tr>
<tr>
<td>Galleria plant factory</td>
<td>Osaka</td>
</tr>
<tr>
<td>Green Chateau plant Factory</td>
<td>Osaka</td>
</tr>
<tr>
<td>Subway Yasai Lavo 2nd shop</td>
<td>Osaka</td>
</tr>
<tr>
<td>VEGEE WORK FACTORY</td>
<td>Osaka</td>
</tr>
<tr>
<td>Yasai Lavo Grand front Osaka branch</td>
<td>Osaka</td>
</tr>
<tr>
<td>Private</td>
<td>Private</td>
</tr>
<tr>
<td>Acol-ku no Suisaien</td>
<td>Saga</td>
</tr>
<tr>
<td>Confirm</td>
<td>Saga</td>
</tr>
<tr>
<td>Smart Agri Kasasagi</td>
<td>Saga</td>
</tr>
<tr>
<td>Yasai-kobo Ansumi Takeo</td>
<td>Saga</td>
</tr>
<tr>
<td>ChiChibu Midorigaoka Farm</td>
<td>Saitama</td>
</tr>
<tr>
<td>High-tech Hanyu</td>
<td>Saitama</td>
</tr>
<tr>
<td>Association of Bio Business</td>
<td>Shiga</td>
</tr>
<tr>
<td>Nagahama Factory</td>
<td>Shiga</td>
</tr>
<tr>
<td>Plant Factory in Woodypal Yogo</td>
<td>Shiga</td>
</tr>
<tr>
<td>Izumono-Shizuku</td>
<td>Shigamane</td>
</tr>
<tr>
<td>Yonago factory</td>
<td>Shigamane</td>
</tr>
<tr>
<td>Fresh Green</td>
<td>Shizuoka</td>
</tr>
<tr>
<td>Fuji Plant Factory</td>
<td>Shizuoka</td>
</tr>
<tr>
<td>Fujieda Office</td>
<td>Shizuoka</td>
</tr>
<tr>
<td>Kakitawga Vegetable plant factory</td>
<td>Shizuoka</td>
</tr>
<tr>
<td>NLM ECAL</td>
<td>Shizuoka</td>
</tr>
<tr>
<td>Oigawa Farm Gigawa plant</td>
<td>Shizuoka</td>
</tr>
<tr>
<td>JA Zennoh Tochigi horticultural Seedling Centre</td>
<td>Tochigi</td>
</tr>
<tr>
<td>Tonkikki</td>
<td>Tochigi</td>
</tr>
<tr>
<td>PF Factory Tokushima</td>
<td>Tokushima</td>
</tr>
<tr>
<td>Chef-no-Noen</td>
<td>Tokyo</td>
</tr>
<tr>
<td>Green Mate Co., Ltd.</td>
<td>Tokyo</td>
</tr>
<tr>
<td>Japan Capacitor Industrial</td>
<td>Tokyo</td>
</tr>
<tr>
<td>Keio Cultivation Institute</td>
<td>Tokyo</td>
</tr>
<tr>
<td>Plantplant Chef-no-Noen</td>
<td>Tokyo</td>
</tr>
<tr>
<td>Sci Tech Farm</td>
<td>Tokyo</td>
</tr>
<tr>
<td>Shimokitazawa Hospital</td>
<td>Tokyo</td>
</tr>
<tr>
<td>Subway Yasai Lavo The first store</td>
<td>Tokyo</td>
</tr>
<tr>
<td>Tokyo dream</td>
<td>Tokyo</td>
</tr>
<tr>
<td>Umeshe-Dining Meisei</td>
<td>Tokyo</td>
</tr>
<tr>
<td>Machinaka plant factory</td>
<td>Tottori</td>
</tr>
<tr>
<td>Main Factory</td>
<td>Tottori</td>
</tr>
<tr>
<td>Company Owned warehouse</td>
<td>Toyama</td>
</tr>
<tr>
<td>Plant Factory</td>
<td>Toyama</td>
</tr>
<tr>
<td>Plant Factory at Namekawa Branch</td>
<td>Toyama</td>
</tr>
<tr>
<td>Smile Leaf Spica</td>
<td>Toyama</td>
</tr>
<tr>
<td>Company</td>
<td>Address</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Takaoka Factory</td>
<td>F&F Co., Ltd.</td>
</tr>
<tr>
<td>Twin Green Factory</td>
<td>Sankyo Tateyama, Inc.</td>
</tr>
<tr>
<td>Kensaido Co., Ltd.</td>
<td></td>
</tr>
<tr>
<td>Toagosei Co., Ltd.</td>
<td></td>
</tr>
<tr>
<td>Anzen Yasai Kojo, Inc.</td>
<td>Anzen Yasai Kojo, Inc.</td>
</tr>
<tr>
<td>Fresh Factory</td>
<td>Yamagata-HOUTOKU Co., Ltd.</td>
</tr>
<tr>
<td>Saien's Lavo</td>
<td>Endo Shoji Co., Ltd.</td>
</tr>
<tr>
<td></td>
<td>Natural Process Factory Co., Ltd.</td>
</tr>
<tr>
<td>Plantation Box</td>
<td>Mizuguchi-denso Co., Ltd.</td>
</tr>
<tr>
<td></td>
<td>Fujikasui Kogyo Co., Ltd.</td>
</tr>
<tr>
<td>Ootoya Green Room</td>
<td>OTOTYA Holdings Co., Ltd.</td>
</tr>
<tr>
<td>Shoun-Service</td>
<td>Shoun-Service co., ltd.</td>
</tr>
<tr>
<td>UNIFARM</td>
<td>UNITECH CO., LTD.</td>
</tr>
<tr>
<td>Ise saien</td>
<td>FT Yamanashi Co., Ltd</td>
</tr>
<tr>
<td>[LED Noen]</td>
<td></td>
</tr>
<tr>
<td>[Da Mamma]</td>
<td></td>
</tr>
</tbody>
</table>

Source: Japan Greenhouse Horticulture Association data as at 2011 (most recent available), translation by Singapore Farming / Newbean Capital
For more information and to download a .pdf of this white paper, please visit indoor.ag/whitepaper